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Abstract

A time domain method is presented for analyzing simultaneous measurements of pressure and
the horizontal components of velocity obtained beneath irregular multidirectional wave fields. This
new method differs from the usual linear directional analyses applied to PUV data in two
important aspects. First, the essential nonlinearity of the measured waves is not sacrificed to
achieve a solution. Therefore, predictions of sea surface elevation and directional kinematics
throughout the water column accurately portray the actual nonlinear character of the waves.
Second, the analysis method is ‘local’ in that it can be applied to segments of PUV time series
much shorter than an individual wave. The viability of the locally nonlinear methodology
developed in this paper is proven by demonstrating agreement with higher-order theoretical steady
waves. Predictions of sea surface elevation and wave kinematics are also made using actual
measurements from PUV instruments at two ocean sites off the west coast of the United States.
q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The PUV gauge has been a popular field instrument for sensing the directional
characteristics of waves. It groups together a pressure transducer and a directional
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current meter in an assemblage such that both instruments have the same horizontal
position and adjacent but wholly submerged vertical positions. In shallow waters, this
assemblage would commonly be deployed near the bed. In deeper waters, deployment
may be much higher in the water column, because of the considerable attenuation in
signal magnitudes with depth. Because these gauges are not surface-piercing, they
escape the most extreme environmental conditions and have the potential to optimize
data recovery.

Ž .The PUV gauges provide simultaneous traces of submerged pressure p t; x , z anda P
Ž . Ž .submerged horizontal velocity components u,Õ or u t; x , z . Both instruments area a UV

Ž . Žat the same fixed horizontal position x, y or x but at different though fixed anda

.adjacent vertical elevations z and z , respectively, as sketched in Fig. 1. ForP UV

notation convenience, the horizontal tensor notation will be adopted; the position
Ž . Ž .coordinates are x , z and the velocity coordinates u ,w , with as1 and as2a a

corresponding to the x and y directions, respectively, of a cartesian coordinate system.
The z-axis is directed vertically upwards from the horizontal plane of the local mean

™Ž .water level MWL , in opposition to the gravity vector g.
Ž .Short extracts from two measured PUV traces are shown in Fig. 2. Trace a was

measured in 46 m of water at Platform Edith, about 9 km offshore from Huntington
Beach, southern California. To a MWL datum, both the pressure gauge and the

Ž .directional current meter are at y7.4 m. The sampling rate is 1 Hz. Trace b was
measured in 17.6 m of water off the Columbia River on the Pacific coast of the United
States. To a MWL datum, both the pressure gauge and the directional current meter are
at y16.8 m. The sampling rate is 4 Hz. There is a substantial ambient current in record
Ž .b .

Although combined into a single instrument, the precision and response of the
pressure and directional current sensors are not identical. It is immediately clear from
Fig. 2 that there is significant instrument noise in the UV traces; this is especially

Fig. 1. Definition sketch and PUV gauge location.
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Fig. 2. Measured PUV traces.

Ž .notable in trace b where the sampling interval is much shorter. The P traces are
consistently smooth. In addition, time is measured independently by each sensor, and
systematic timing discrepancies are possible. This is not evident at the scale of these
plots, but becomes a potential concern at the time scale of the local analysis that is
subsequently outlined.

Analysis of simultaneous traces such as Fig. 2 has routinely adopted linear wave
theory in the interpretation of the local kinematics and in the estimation of the water
surface time history. This prior assumption of linearity has the potential for significant
misinterpretation of the actual local kinematics. Nonlinear influences may be filtered and
distorted by the record interpretation. In addition, most linear analyses assume stationary
conditions over a measurement span of sufficient duration to obtain adequate frequency
resolution in the Fourier transform.

This paper will introduce and demonstrate a nonlinear theory for the interpretation of
PUV traces. The initial discussion will review and illustrate the common linear analysis.
This leads to the presentation of a nonlinear theory for the interpretation of the local
irregular kinematics sampled by the PUV gauge. The theory follows the spirit of the

Ž .Sobey 1992 analysis for irregular wave kinematics from a water surface record. The
nonlinear PUV theory is demonstrated and evaluated for theoretical PUV traces from
steady wave theory and for measured PUV traces from the Platform Edith and Columbia
River sites anticipated in Fig. 2.
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2. Global linear analysis

Linear analyses of direction-sensing field instruments have mostly followed the
Ž . Ž .floating buoy analysis of Longuet-Higgins et al. 1963 see also Horikawa, 1988 . This

is a frequency domain analysis, which uses the entire burst sample for each kinematic
quantity measured. A typical burst sample has a duration of about 20 min, such that it
would include upwards of a hundred waves. There are essentially equivalent implemen-

Ž .tations in the time domain e.g., Lee and Wang, 1984 .
The fundamental basis of the methodology is the Gaussian random wave model, in

which the irregular water surface is represented as the superposition of very many linear
waves of different frequencies, directions and amplitudes. In the limit, summing over all
positive frequencies v and directions u , the water surface h is represented as:

p `1
h x ,t s F v ,u exp yi k x yv t dvdu , 1Ž . Ž . Ž . Ž .H Ha a a2p yp 0

Ž .where F v,u is the complex Fourier transform of h in radian frequency-direction
space, defined by the inverse Fourier transform:

p `

F v ,u ; x ,t s h x ,t exp i k x yv t dvdu , 2Ž . Ž . Ž . Ž .H Ha a a a
yp 0

™
and k are the cartesian components of the vector wave number k. k and v are relateda a

through the linear dispersion relationship for waves on a steady current:

2
vyk U sgk tanh kh , 3Ž . Ž .a a

in which U is the local depth-uniform and steady current.a

It follows directly from linear wave theory that the Fourier transforms of the dynamic
pressure p and the horizontal velocity components u are:d a

F v ,u ; x , z ,t sK v ; z F v ,u ; x ,t , 4Ž . Ž . Ž . Ž .p a p a

ka
F v ,u ; x , z ,t sK v ; z F v ,u ; x ,t , 5Ž . Ž . Ž . Ž .u a u aa k

Ž .respectively, where k rk is the vector cos u , sin u and:a

cosh k hqz cosh k hqzŽ . Ž .
K v ; z sr g and K v ; z s vyk U .Ž . Ž . Ž .p u a acosh kh sinh kh

6Ž .

The K and K transfer functions are not dependent on the observations. In practice,p u

the Doppler adjustment for local current is mostly omitted, a common practice being to
Ž .remove the mean level i.e., the current from the velocity traces prior to analysis.

Ž .Longuet-Higgins et al. 1963 approximated the local directional variance spectrum
Ž . Ž .E v,u , strictly E v,u , as the first five terms in a Fourier series in u :hh

2 1
E v ,u sa q a cos uqb sin u q a cos 2uqb sin 2u q . . . 7Ž . Ž . Ž . Ž .0 1 1 2 23 6
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Ž .in which Grosskopf et al., 1983; Horikawa, 1988 the coefficients are frequency-depen-
dent:

E vŽ .p p
a v s 8Ž . Ž .0 22p K v ; zŽ .p P

E v E v yE vŽ . Ž . Ž .pu u u u u1 1 1 2 2a v s a v s 9Ž . Ž . Ž .1 2 2p K v ; z K v ; z p K v ; zŽ . Ž . Ž .p P u UV u UV

E v 2 E vŽ . Ž .pu u u2 1 2b v s b v s . 10Ž . Ž . Ž .1 2 2p K v ; z K v ; z p K v ; zŽ . Ž . Ž .p P u UV u UV

Ž . Ž . Ž .E v , E v and E v are the auto-variance spectra estimated from the p, up p u u u u 11 1 2 2

Ž . Ž . Ž .and u burst samples. E v , E v and E v are the cross-variance spectra from2 pu pu u u1 2 1 2

the same burst samples.
This algorithm has the advantages of convenience, relative simplicity and many years

of routine use. The fundamental reliance on linear theory and on spectral analysis are
both potentially significant constraints. Linear theory compromises the identification and
extraction of nonlinear influences in the data. The practice of spectral analysis insists
that the local kinematics at time t be dependent with almost equal weight on all data

Ž .observations at ts0,D t,2D t,3D t, . . . , Ny1 D t in the burst sample. For PUV data, D t
is typically 1 s and the ND t duration of the data is typically 20 min, for which N

Ž .exceeds 1000 observations. This is a linear and very global burst-sample duration
interpretation. To preserve the physical integrity of the data, a very local interpretation
would be preferable. Locally linear and then locally nonlinear theories are presented in
the following sections.

3. A local linear analysis

A linear but locally focused interpretation is a useful intermediate step, in the spirit of
Ž .the Nielsen 1989 locally linear approximation to irregular wave kinematics from a

water surface trace. The basis is linear theory estimates of dynamic pressure and
horizontal velocity components:

cosh k hqzŽ .
p x , z ,t sr g h x ,t , 11Ž . Ž . Ž .d a acosh kh

k cosh k hqzŽ .a
u x , z ,t sU q vyk U h x ,t , 12Ž . Ž . Ž . Ž .a a a a a ak sinh kh

in which:

h x ,t sa cos k x yv t , 13Ž . Ž . Ž .a a a

is the linear water surface, and k and v are related through the linear dispersion
Ž Ž ..relationship Eq. 3 .
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A prediction of the local kinematics is sought throughout the water column in the
immediate neighborhood of the PUV gauge at horizontal position x . The pressurea

sensor is at known elevation z and the directional current meter at known elevationP
obs Ž .z . Measured dynamic pressure traces p sp t ; x , z are available at discreteUV d d i a P

obs Ž .times t , as are measured velocity component traces u su t ; x , z at the samei a a i a UV

discrete times. The local water depth h and depth-uniform current U are also known.a

The current can be estimated from the UV traces as a time-average over sufficient time
to average over the local waves but not over local astronomical and storm tide currents.

Ž .At each time, there are four unknowns v,k and h and four equations, dispersiona

Ž Ž .. Ž Ž . Ž ..Eq. 3 plus the three observational equations Eqs. 11 and 12 . These are the
simultaneous implicit algebraic equations:

2f v ,k ,h s vyk U ygk tanh khs0Ž . Ž .1 a a a

cosh k hqzŽ .P obsf v ,k ,h sr g hyp s0Ž .2 a dcosh kh
14Ž .k cosh k hqzŽ .1 UV obsf v ,k ,h sU q vyk U hyu s0Ž . Ž .3 a 1 a a 1k sinh kh

k cosh k hqzŽ .2 UV obsf v ,k ,h sU q vyk U hyu s0,Ž . Ž .4 a 2 a a 2k sinh kh

In principle, a unique local solution at each time t can be computed. An analyticali

solution does not seem feasible. A direct numerical algorithm is the Newton–Raphson
Ž . Ž . Žn.method. Writing Eq. 14 as f x s0 where i, js1,2,3,4 and vector x as thei j j

solution estimate at iteration n, the correction D x Žn. is suggested by the local Taylorj

series expansion:

Ž .n
E fiŽ .n Žn.f x q D x q . . . s0. 15Ž .Ž .i j jE x j

Ž .The Jacobian E f rEx is evaluated analytically and Eq. 15 is solved by matrixi j

inversion.
The predictive potential of this algorithm was evaluated for a theoretical steady wave

train of period 10 s and height 10 m, directed at qpr10 to the x-axis in 20 m of water
and an opposing current of y1 mrs. The PUV gauge is located at z sz sy10 m.P UV

The initial theoretical PUV trace was computed from Airy theory at a sampling time
interval of 0.5 s. With this trace as the measured PUV record, the local linear algorithm
predicted the local wave frequency, the local wave number components and the local
water surface elevation. Except in the immediate neighborhood of zero-crossings, where

Ž .profile curvature is minimal and Eq. 14 is ill-conditioned, there was consistent
agreement with Airy theory to four significant figures.

Ž .A second theoretical PUV trace record ‘Twenty’; see Table 1 was computed from
Ž . Ž .near-exact global Fourier wave theory Sobey, 1989 , also at a sampling time interval

of 0.5 s. With this trace as the measured PUV record, the local linear algorithm was
significantly less successful.
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Table 1
Sample theoretical waves

Wave H h T U U z z1 2 P UV

Five 3 m 5 m 10 s y1.902 y0.618 y5.0 m y5.0 m
Twenty 10 m 20 m 10 s y0.951 y0.309 y10.0 m y10.0 m
Hundred 20 m 100 m 10 s y0.478 y0.155 y20.0 m y20.0 m

The predicted water surface elevation and wave number components from the local
linear algorithm are shown in Fig. 3 as the markers, together with the near-exact

Ž .predictions from global Fourier wave theory as the solid lines. Solutions to Eq. 14 at
times in the immediate neighborhood of the zero-crossings were difficult to obtain, and
required initial solution estimates that were almost exact. For this ‘wave transitional’
situation, a solution was obtained throughout. It is smooth and visually convincing,
except when compared with the near-exact predictions. There is order of magnitude
agreement only. The crest elevation in particular is poorly predicted.

Some variations on the locally linear formulation may achieve a more acceptable and
perhaps also more robust local solution, but the indications are not encouraging.
Eliminating h between the f and both the f and f equations gives:2 3 4

k r g cosh k hqzŽ .a Pobsvyk U s u yU tanh kh. 16Ž . Ž .Ž .a a a a obsk cosh k hqzp Ž .UVd

Ž . Ž .Fig. 3. Local linear theory markers and global Fourier theory solid lines predictions for Record ‘Twenty’.
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Squaring now and using in the f equation establishes a single implicit algebraic1

equation in the local wave number k:
2

r g cosh k hqz gkŽ .Pobs obsF k s u yU u yU y s0. 17Ž . Ž .Ž . Ž .a a a a obs cosh k hqz tanh khp Ž .UVd

Ž .Some special cases of this equation are very revealing. When z sz , Eq. 17P UV

becomes:
21 r g kh

X obs obsF k s u yU u yU y s0. 18Ž . Ž .Ž . Ž .a a a a obsgh tanh khpd

Ž .The function khrtanh kh is 1 at khs0 ‘wave shallow’ water , and approaches kh
Ž .asymptotically from above for large kh ‘wave deep’ water . There are solutions only

for:
21 r g

obs obsu yU u yU )1. 19Ž .Ž . Ž .a a a a obsgh pd

Solutions do not exist under quite a wide range of conditions. This is a potentially fatal
impediment.

It may be possible to reformulate the locally linear problem to avoid these difficul-
ties. Those time steps where there is no solution might be accommodated by the solution

Ž .of Eq. 14 in the least-squares sense rather than an exact solution. It may also be
advisable to use neighboring observations in the local solutions. From the experience of

Ž .the Sobey 1992 locally nonlinear solution from water surface traces, both of these
measures might help in dealing with observational error bands. All of these, however,
increase the complexity of the locally linear formulation and negate the sole advantage
of a linear formulation, simplicity. A locally nonlinear analysis is viable and is
introduced in Section 4.

4. A local nonlinear analysis

Nonlinear and irregular waves follow a field equation, the Laplace equation:

E 2f E 2f
q s0, 20Ž .2E x E x E za a

together with kinematic and dynamic free surface boundary conditions:
Eh Eh

Xf swy yu s0 at zsh , 21Ž .K aE t E xa

Ef 1
2f s q u u qw qghs0 at zsh , 22Ž .Ž .D b bE t 2

and a kinematic bottom boundary condition on a sloping bed:

E h
wqu s0 at zsyh. 23Ž .a E xa
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These equations assume only that the flow is irrotational and incompressible. The
Ž .velocity potential function is defined such that the velocity components are u ,w sa

Ž .EfrEx ,EfrEz .a

If it is further assumed that the bottom is locally horizontal, the bottom boundary
condition becomes just:

ws0 at zsyh. 24Ž .
Nonlinear wave solutions of the form:

cosh jk hqzŽ .
f x , z ,t sU x q A sin j k x yv t , 25Ž . Ž . Ž .Ýa a a j a acosh jkhj

Ž Ž .. Žexactly satisfy the field Eq. 20 and the reduced bottom boundary condition Eq.
Ž ..24 . The current U must be steady and depth-uniform, excluding any consideration ofa

velocity shear.
From the known velocity potential function, the velocity components are:

cosh jk hqzŽ .
u x , z ,t sU q jk A cos j k x yv t , 26Ž . Ž . Ž .Ýa a a a j a acosh jkhj

sinh jk hqzŽ .
w x , z ,t s jkA sin j k x yv t . 27Ž . Ž . Ž .Ýa j a acosh jkhj

Using also the irrotational Bernoulli equation, the dynamic pressure is:

Ef 1
2p x , z ,t sBy y u u qw , 28Ž . Ž .Ž .d a a aE t 2

in which:

Ef sinh jk hqzŽ .
sy jv A cos j k x yv t , 29Ž . Ž .Ý j a aE t cosh jkhj

Ž .and the Bernoulli constant is Sobey, 1992 :
21 1 jkAj

Bs U U q . 30Ž .Ýa a ž /2 4 cosh jkhj

A prediction of the local kinematics is sought throughout the water column in the
immediate neighborhood of the PUV gauge at horizontal position x . The pressurea

sensor is at known elevation z and the directional current meter at known elevationP
obs Ž .z . Measured dynamic pressure traces p sp t ; x , z are available at discreteUV d d i a P

obs Ž .times t , and measured velocity component traces u su t ; x , z are available ati a a i a UV

the same discrete times. The local water depth h and depth-uniform current U are alsoa

known. The current can be estimated from the UV traces as a time-average over
sufficient time to average over the local waves but not over local astronomical and storm
tide currents.

The unknowns in this local solution are radian frequency v, the wave number
components k , the spatial phase k x , the Fourier coefficients A and the local watera a a j
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Ž .surface elevations h sh t ; x in the neighborhood of time t . With J Fouriern n a i

coefficients, N local water surface elevations, and treating the spatial phase as a single
unknown, there are 4qJqN unknowns.

Active equations are provided by the PUV observations and by the kinematic and
dynamic free surface boundary conditions. Note that the primitive form of the kinematic

Ž .free surface boundary condition, Eq. 21 , requires estimates of EhrEt and EhrEx . Thea

temporal gradient EhrEt might be estimated from interpolation among the local hn

which is part of the solution, but there is no spatial information from the PUV traces.
Ž .Sobey 1992 estimated these spatial gradients by imposing a locally steady approxima-

tion on the waves.
This additional approximation can be avoided. The problem formulation is not

Ž .compromised by redefinition Longuet-Higgins, 1962 of the kinematic free surface
boundary condition as:

1 DfDXf s f qK K g Dt
31Ž .

1 D Ef u Du w Dwb b
swq q q at zsh .ž /g Dt E t g Dt g Dt

This modified form of the kinematic free surface boundary condition excludes both
temporal and spatial gradients of h.

As an initial evaluation of this form of the kinematic free surface boundary condition,
Ž .it was substituted in the Sobey 1992 code for local irregular wave kinematics from a

Ž .single water surface trace local Fourier irregular; LFI-E . For theoretical traces where
the locally steady approximation was exact, the results were visually identical. For
measured traces, the results were similar. Without the need to estimate EhrEt from
measured water surface elevations, the local numerical solutions appeared to be much

Ž .more robust. The Eq. 31 form of the kinematic free surface boundary condition was
adopted in the present PUV analysis.

At any time t where there is an assigned water surface node, active theoretical
equations are provided by both free surface boundary conditions. In addition, there are
PUV observational equations at each discrete measurement time t . Each of thesei

equations are implicit and algebraic. Available equations are the modified KFSBC at h,
the DFSBC at h, a pressure equation at z and two horizontal velocity equations atP

z :UV

1 D Ef u Du w Dwb b
f v ,k ,k x , A ,h swq q q s0 at zshŽ .K a a a j ž /g Dt E t g Dt g Dt

Ef 1
2 2f v ,k ,k x , A ,h s q u qw qghs0 at zshŽ . Ž .D a a a j bE t 2

obsf v ,k ,k x , A ,h sp yp s0 at zszŽ .p a a a j d d P

obsf v ,k ,k x , A ,h su yu s0 at zsz .Ž .u a a a j a a UVa

32Ž .
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Additional closure equations can be provided by observational and free surface bound-
ary equations at neighboring times within a short local window of duration t that is0

centered on t . At least 4qJqN independent equations must be provided to solve fori

4qJqN unknowns.
Apart from this strict mathematical closure requirement, there is an additional

constraint. The K and D free surface boundary equations are exact, but the P, U and V
observational equations have measurement error bands. Also, the P and U, V sensors are
unlikely to have the same accuracy. Present technology has much larger error bands on
the U, V traces than on the P traces; this is seen quite clearly in Fig. 2b, where the
sampling rate is 4 Hz. These realities of the problem formulation are accommodated by
a significant overspecification of the problem, especially with the UV observational
equations, and the adoption of a least squares rather than an exact solution. Flexibility in
the time location of the PUV observational equations was also introduced through cubic
spline interpolation among the measured points.

The local LFI-PUV theory has three free parameters, the truncation order J and the
number of h points N in each local window together with the width t rT of the local0 z

windows. The truncation order has much the same authority as order in an analytical
Ž .wave theory Stokes, conoidal or truncation order in Fourier wave theory. A window

width of t rT s1 would be a global solution. A particular solution will be designated0 z
w x w xLFI-PUV J, N,t rT . For example, LFI-PUV 3,3,0.1 has Js3, Ns3 and t rT s0 z 0 z

0.1.

5. Numerical implementation

Ž .As in Sobey 1992 , the analysis segment routinely adopted was a double wave
sequence centered about a crest suggested by the pressure trace. Solutions are sought in
narrow local windows, with a target width of order t s0.1T , where T is the zero-up0 z z

crossing period of the record segment.
In all applications of the present theory, it has proven convenient to assign an odd

Ž . Žnumber of local water surface elevation h t ; with Ns1 or 3 for a single widthn
. Ž .window or 5 for a double width window , such that there is always a computed water

surface elevation centrally located in the window. With respect to the time at the center
Ž .of a window of width t , h t points are located at trt s0; "0.5; "1.0. K and D0 n 0

Ž .equations are applied at each of these h t points, depending on the value of N. Atn
ŽNs5, the local window width is doubled. There are 2 Ns2 or 6 for a single-width

. Ž .window or 10 for a double-width window of these water surface equations.
P, U and V observational equations are located at the center of the window.

Additional PUV equations within the window are located such that UV observational
equations are not assigned a weighting that was inconsistent with their routinely larger
error bands. With respect to the time at the center of a window of width t , P equations0

are located at trt s"0.25, "0.5 in a single width window and also at "0.75, "1 in0

a double width window. The associated U and V equations are located at trt s"0.125,0

"0.25, "0.375, "0.5 in a single-width window and also "0.625, "0.75, "0.875,
"1 in a double-width window. The explicit higher density of UV equations, together
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with the least squares algorithm, was adopted as partial accommodation of the larger
error bands of the UV observational equations. The least squares objective function was
normalized as:

1 1 1
2 2 2 2 2O v ,k ,k x ; A ;h s Ý f q f q Ý f q Ý f q f ,Ž . Ž . Ž .a a a j n K D P U V2 N N 2 NP UV

33Ž .

such that K, D, P and UV equation groups have equal weight. N is 1q4L and N isP UV
Ž . Ž .1q8 L, where L is 1 single-width window or 2 double-width window .

Ž . ŽThere are 3q20Ls23 for a single width window or 43 for a double width
.window observational equations. There are a total of 2 Nq3q20L physical and

observational equations in 4qJqN unknowns, where 2 Nq3q20L must equal or
exceed 4qJqN. A typical application has Js3 and Ns3, so that there are 10
unknowns: v,k ,k x , A , A , A ,h ,h ,h . For a single-width window, there are 29a a a 1 2 3 1 2 3

equations, and 49 for a double-width window. Experience suggested that this level of
overspecification was generally necessary to accommodate the observational error

Ž .bands. For theoretical wave traces with no observational error bands see Section 6 ,
only a closed set of KD and PUV equations was necessary for credible solutions;
overspecification did not compromise this success.

The problem formulation requires the least-squares solution of a system of simultane-
ous, nonlinear, implicit algebraic equations. Numerical solutions routinely used the

Ž .Dennis et al. 1981b NL2SOL code; an updated code is available from the internet
ŽNetlib repository of scientific subroutines in fortran. The algorithm Dennis et al.,

.1981a is a variation on Newton’s method in which part of the Hessian matrix is
computed exactly and part is approximated by a secant updating method. To promote
convergence from poor starting guesses, a modelrtrust-region technique is used along
with an adaptive choice of the model Hessian. In operation, the algorithm sometimes
reduces to the classical Gauss–Newton or Levenberg–Marquardt methods.

The number of unknowns, typically 10, is relatively large. In any such high order
nonlinear optimization problem, the crucial elements of successful solutions are invari-
ably accurate estimates of the Jacobian and good initial solution estimates. Accurate
estimates of the Jacobian require analytical estimates of the partial derivatives of all f
equations with respect to all the unknown parameters. These are the quantities
E f rEv,E f rEk ,E f rEk , . . . through . . . , E f rEh . The analytical derivatives wereK K 1 K 2 u N2

evaluated and confirmed against finite difference approximations.
Establishing good initial solution estimates always requires extensive experience with

the particular physical problem and system of equations. The methodology finally
adopted was a two-stage algorithm. The initial step identified three overlapping record
sub-segments, the half-wave extract centered on the leading trough, the half-wave
centered on the central crest and the half-wave centered on the following trough. Each
half-wave is equivalent to an extra-wide window of width about 0.5T . In eachz

half-wave of, say, NN discrete PUV observations, h points were located at the same
times such that there are 4qJqNN unknowns. K, D, P, U and V equations are assigned
at the same times, giving 5NN equations. For a PUV record sampled at ss Hz, there



( )R.J. Sobey, S.A. HughesrCoastal Engineering 36 1999 17–36 29

would be about 7 ss observational points in a half-window. For Js3 and sss1, there
would be 14 unknowns and 35 equations. For Js3 and sss4, there would be 35
unknowns and 140 equations. With initial estimates provided by a global Airy theory
approximation, smooth and robust solutions are established in each extra-wide half-
window. These in turn provide routinely appropriate initial estimates for the local
solutions in very much narrower windows.

The algorithm had most difficulty in finding credible local solutions around the
zero-crossings of the P trace. At such regions, profile curvature is very small and a
narrow local window has poor resolution. Often, this is not a region of particular
concern. Two strategies are possible in dealing with this problem. The first would be to
ignore such points and rely on interpolating for the kinematics from adjacent local
solutions that bracket the zero-crossings. The second would be to extend the local
window to improve resolution of the local profile curvature. This second approach has
been adopted, and was the essential rationale for the double-width window introduced
above.

6. Theoretical wave traces

An initial evaluation of the LFI-PUV theory and coding is provided by theoretical
PUV traces from uniform, long-crested wave trains. Three monochromatic waves,

w xFig. 4. LFI-PUV 3,3,0.1 predictions for wave ‘Twenty’.
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‘Five’, ‘Twenty’ and ‘Hundred’, have been defined, respectively, in wave shallow, wave
transitional and wave deep water. The details are listed in Table 1. The wave heights in
all three cases are moderately extreme for the depth. Note in particular the location of
both z and z higher in the water column for waves ‘Twenty’ and ‘Hundred’. TheP UV

significant attenuation in wave kinematics with depth is frequently mitigated by such a
Ž .practice. Global Fourier wave theory Sobey, 1989 , at truncation order 18 with 25 water

surface nodes from crest to trough, provides near-exact kinematics for these wave trains.
The PUV observational traces at the listed elevations were predicted at a time interval

w x Ž .of 0.5 s. LFI-PUV 3,3,0.1 predictions for wave ‘Twenty’ are shown in Fig. 4. Part a
Ž . Ž .shows the ‘measured’ p t; z trace together with the ‘measured’ u t; z andd P 1 UV

Ž . Ž . Ž .u t; z traces. Part b shows the h traces predicted by LFI-PUV markers and by2 UV
Ž .the near-exact Fourier wave theory continuous line . Compare this result to the

Žrelatively poor prediction of h for wave ‘Twenty’ using the locally linear method Fig.
. Ž .3 . Part c shows all three velocity components at elevation zsyHr2 just below the

Ž .trough, and part d all three acceleration components also at the same near trough
elevation. Again, the markers are LFI-PUV predictions and the continuous lines are
from the near-exact Fourier wave theory. Agreement throughout is almost perfect.

Ž .The excellent agreement is achieved at a relatively low order Js3 , and this is a
consistent strength of the LFI methodology. This success at such low order is achieved
by seeking separate solutions in each local window. The solution parameters,
v,k ,k x , A ,h , will vary from window to window. The variation in the v, k anda a a j n a

A parameters, that would also be defined in a global solution, is not expected to be veryj

large. The local variation in these solution parameters for wave ‘Twenty’ is shown in
Fig. 5. Note the double-width windows at the profile zero-crossings near ts"2 s.

w xFig. 5. LFI-PUV 3,3,0.1 local solution parameters for wave ‘Twenty’.
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w xFig. 6. LFI-PUV 3,3,0.1 predictions for wave ‘Five’.

Similarly excellent agreement is achieved for waves ‘Five’ and ‘Hundred’, respec-
w xtively, in wave shallow and wave deep water. Comparisons of LFI-PUV 3,3,0.1

solutions and near-exact Fourier kinematics are shown in Figs. 6 and 7. Collectively,
waves ‘Five’, ‘Twenty’ and ‘Hundred’ demonstrate the suitability of the LFI-PUV
algorithm under expected operational conditions from wave shallow through wave
transitional to wave deep water.

7. Measured wave traces

The theoretical traces of Section 6 provide confidence in the problem formulation and
in the numerical algorithm. But the LFI-PUV methodology is intended for the nonlinear
interpretation of field PUV traces. The inherent measurement error bands of field PUV
traces will provide a much more challenging test.

The two field records partially illustrated in Fig. 2 have been used for evaluation.
Apart from sampling very different wave climates, these records differ very significantly
in the sampling rates, 1 Hz for the Platform Edith data and 4 Hz for the Columbia River
data.

w xFigs. 8 and 9 show sample LFI-PUV 3,3,0.2 predictions of local kinematics from
these records. These predictions are credible and they match the measured PUV traces
by definition, but there is no independent field data for confirmation. In the Sobey
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w xFig. 7. LFI-PUV 3,3,0.1 predictions for wave ‘Hundred’.

w xFig. 8. LFI-PUV 3,3,0.2 predictions from Platform Edith data.
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w xFig. 9. LFI-PUV 3,3,0.2 predictions from Columbia River data.

Ž .1992 LFI-E theory for irregular wave kinematics from single-point water surface
traces, a window width of t rT s0.1 was routinely satisfactory. For PUV traces, the0 z

observational equations are somewhat less authoritative. An obvious reason is the
relatively large error bands on the UV measurements. Another possible reason is natural
signal attenuation with depth of submergence; the higher frequencies are most rapidly

Ž .attenuated and their influence may get lost in the error bands Barker, 1998 . Neverthe-
less, experience suggested the routine adoption of a slightly wider window width of

Ž .t rT s0.2. Barker and Sobey 1996 also recommended this same window width for0 z

irregular wave kinematics from pressure records alone.
It is instructive, nevertheless, to compare the locally nonlinear prediction of sea

Žsurface elevation with the locally linear prediction shown as the markers on Figs. 8b
.and 9b . The density of the linear solutions match the data resolution. In Fig. 8b, D t is

Ž Ž . .1.0 s. Where there is no solution see Eq. 17 and following , the marker is located at
the MWL, as at times y4, y3 y2, 2, 6, 7 and 10 s. Solutions at 0, 1 and 9 s are
significantly off scale, and only those at y1, 3, 4, 5 and 8 s have any credibility. In Fig.
9b, D t is 0.25 s. There are many ‘no solution’ markers and the few locations where
linear solutions were obtained are mostly off-scale or have little credibility. The
theoretical reservation on the linear method, potentially significant underprediction at the

Ž .crest see Fig. 3 , is clearly overwhelmed by the frequency of either ‘no solution’ results
or solutions that have no visual credibility. The linear method must be rejected on both
theoretical and practical grounds.
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The LFI-PUV solutions for the Columbia River data have a somewhat tenuous
nature, evidenced by the sharp changes in predicted kinematics in the neighborhood of

Ž .times y8, q5 and q8 s. The UV error bands for this record Fig. 2b are quite
significant. The specific PUV gauge was designed with the expectation that analysis

Ž .would follow the Longuet-Higgins et al. 1963 linear and global frequency-domain
Ž . Ž .analysis outlined in Eqs. 1 – 10 . In this global linear analysis, measurement error is

Ž . Ž .easily accommodated by spectral smoothing of the E v,u through E v,upu u u1 2 2

Ž . Ž .auto-variance and cross-variance spectra andror the E v,u estimate from Eq. 7 .hh

Measurement error bands are not so easily dismissed in the local LFI-PUV theory.
LFI-PUV seeks an enhanced representation of the local kinematics, through the direct
use of local PUV measurements in the problem formulation. The local PUV measure-
ments provide the local reality, so that the predictive potential can be significantly
compromised by local measurement error. The Columbia River data set provides a
useful reality check. While the value of the Fig. 9 predictions are arguably tenuous, their
particular value may lie in the identification of UV measurement error bands as a
relevant design issue for PUV instrumentation.

An associated instrument design issue is the attenuation of the fluctuating kinematics
Ž .P and UV with increasing depth of submergence and with increasing frequency. The
attenuation increases with both frequency and depth of submergence. Transducer
accuracy is absolute, so that relative accuracy is significantly compromised for deeply
submerged instruments at higher frequencies in deeper water. There is only partial
mitigation for this in the superior accuracy of P measurements, with respect to UV
measurements. The design compromise has been to locate PUV gauges reasonably high
in the water column to avoid this problem as much as possible. The Columbia River
gauge is deployed at y16.8 m where the water depth is 17.6 m, but the Platform Edith
gauge is deployed at only y7.4 m where the water depth is 46 m. The deeper
submergence of the Columbia River gauge contributes to the tenuous nature of the
analysis of this data.

A careful review of the Fig. 9 predictions reveals that the maximum vertical velocity
prediction, 1.59 mrs at q0.5 s, exceeds the maximum horizontal velocity prediction,
1.39 mrs at y0.5 s. In a global steady wave solution, such as the ‘global Fourier’
solutions in Figs. 4, 6 and 7, the maximum horizontal and vertical velocities will again
not coincide in time, but the maximum vertical velocity magnitude will always be
smaller than the maximum horizontal velocity magnitude. This underlines the local
character of the LFI-PUV methodology. The LFI-PUV solutions in each local window
are independent, and directly reflect the local measured kinematics. There is no global
influence.

A final phase in evaluation of the LFI-PUV methodology would be detailed labora-
tory measurements of kinematics under regular and irregular wave conditions. These

Ž .should include a PUV instrument plus the local water surface and u ,w velocitya

component and dynamic pressure measurements at one or more different near-surface
elevations. Suitable laboratory data do not presently exist. Establishing a suitable data
set would be a very major task. It would presumably involve sophisticated three-dimen-
sional laser Doppler instrumentation for the velocity measurements. Pressure is very
rarely measured in a wave laboratory, except at structures where the data would be
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unsuitable. Pressure measurement at near-surface elevations under waves would require
special attention.

8. Conclusions

Traditional directional analysis of PUV data results in linearized estimates of
directional wave and velocity spectra which typically do not include steady currents.
Attempts to reconstitute velocity time series at any other location in the water column
result in linear estimates with decreasing veracity approaching the free surface. The
single advantage of linear directional spectral analysis is the compactness of the output
which corresponds to loss of information. However, this compactness could become a
liability in some applications.

A new method has been presented for interpreting traces recorded by conventional
PUV instruments under irregular multidirectional waves. This time-domain method
provides estimates of sea surface elevation and wave kinematics throughout the water
column without compromising the essential nonlinear character of the waves. The key to
the formulation is retention of the fully nonlinear free surface boundary conditions
which are used in seeking a nonlinear least-squares solution in a narrow time window.
Also included is the nonlinear interaction between the waves and a steady and
depth-uniform current. The analysis method provides nearly exact results for theoretical
nonlinear steady waves. Application to field data requires overspecification in the
solution to allow for instrument error bands. Nevertheless, credible solutions were
obtained using PUV measurement from two field locations with very energetic wave and
current conditions.

Results from the locally nonlinear analysis differ substantially from traditional
directional spectra. The method provides time series of sea surface elevation h, radial
frequency v, directional wave numbers k and k , and Fourier coefficients, A . These1 2 j

local solution parameters provide predictions of corresponding time series for any
kinematic quantity at any position in the water column. A complete field solution is
available at each time interval.

The locally nonlinear PUV method provides a distinct improvement for analyzing
practical problems in which individual wave characteristics are critical. For example,
wave loads on offshore structures depend on wave height, fluid velocity, fluid accelera-
tion, and the phasing between maximum velocity and acceleration. Retaining the
nonlinear characteristics inherent in the measured data is critical for credible load
determination.

The locally nonlinear analysis is fairly computationally intensive, and it creates
additional information rather than condensing the measurements. Therefore, this method
is probably not well-suited for routine analysis and archiving of PUV records obtained
over a lengthy deployment. However, because the method does not rely on the entire
time series, it is possible to perform selective analysis of individual waves or large wave
groups within the time series that may be of particular interest. Examples include
so-called ‘freak waves’ and even tsunami waves. Also, the local nature of the nonlinear
analysis method may find application providing near real-time wave estimates from
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PUV gauges. It may also assist in the design evolution of PUV gauges, as it provides a
more realistic interpretation of the strong nonlinearities associated with the more
extreme events.
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